您现在的位置是:衣物饰品 >>正文

矩阵的秩(矩阵的秩和行列式的值有什么关系)

衣物饰品95人已围观

简介  本篇文章给大家谈谈矩阵的秩,以及矩阵的秩和行列式的值有什么关系对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。矩阵的秩是什么意思1、矩阵的秩是线性代数中的一个概念。在线性代数中,一个矩阵A的列秩 ...

    

本篇文章给大家谈谈矩阵的矩阵矩阵秩,以及矩阵的秩的秩的值秩和行列式的值有什么关系对应的知识点,希望对各位有所帮助,和行不要忘了收藏本站喔。列式

矩阵的秩是什么意思

1、矩阵的矩阵矩阵秩是线性代数中的一个概念。在线性代数中,秩的秩的值一个矩阵A的和行列秩是A的线性独立的纵列的极大数。通常表示为r(A),列式rk(A)或rankA。关系

2、矩阵矩阵在线性代数中,秩的秩的值一个矩阵A的和行列秩是A的线性独立的纵列的极大数目。类似地,列式行秩是关系A的线性无关的横行的极大数目。通俗一点说,

3、如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

矩阵的秩

我们通过一个例子来学习:如何计算矩阵的秩

假设我们有这样的矩阵:

第一步便是求 行阶梯形矩阵 ,求法就是把

经过一系列的初等变换以后我们得到 行阶梯形矩阵 :

由于特别像楼梯,所以我们叫做 行阶梯形矩阵 (并不要求,每个阶梯的第一个数必须是 1)

接下来我们把 行阶梯形矩阵 转换成 行最简形矩阵

行最简形矩阵 要求:

现在由于我们的 行阶梯形矩阵 :阶梯上的第一个元素全为 1,所以我们只需将,第一个 阶梯元素 的其他行变为 0 就行了:

所以我们将 并且 得到:

化到最简我们可以实现:

可以将「行最简形矩阵」经过列变换以后,得到 标准型 矩阵

所谓 k 阶子式就是在原矩阵中,画 k 条横线 k 条竖线,然后取交界。

比如假设我们有这样的矩阵:

它的一阶子式就是:

也不说秩的定义了,直接上结论:

假设我们有矩阵 A,行最简形矩阵中非 0 行的个数叫做矩阵的秩,记做

如果矩阵 A 满秩:

假设矩阵 ,我们有以下结论:

矩阵的秩是什么?

就是二次型对应矩阵的秩。等于二次型非0特征根的个数。

一个矩阵A的列秩是A的线性独立的纵列的极大数目。类似地,行秩是A的线性无关的横行的极大数目。

如果把矩阵看成一个个行向量或者列向量,秩就是这些行向量或者列向量的秩,也就是极大无关组中所含向量的个数。

当r(A)=n-2时,最高阶非零子式的阶数=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

当r(A)=n-1时,最高阶非零子式的阶数=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

扩展资料:

n个变量的二次多项式称为二次型,即在一个多项式中,未知数的个数为任意多个,但每一项的次数都为2的多项式。线性代数的重要内容之一,它起源于几何学中二次曲线方程和二次曲面方程化为标准形问题的研究。

柯西在别人著作的基础上,着手研究化简变数的二次型问题,并证明了特征方程在直角坐标系的任何变换下不变性。后来,他又证明了n个变数的两个二次型能用同一个线性变换同时化成平方和。

双线性形式B的核由正交于V的所有元素组成,而二次形式Q的核由B的核中的有Q(u)=0的所有元素u组成。 如果2是可逆的,则Q和它的相伴双线性形式B有同样的核。

双线性形式B被称为非奇异的,如果它的核是0;二次形式Q被称为非奇异的,如果它的核是0。

参考资料来源;百度百科——矩阵的秩

什么是矩阵的秩

第一个角度,也就是书本上的定义,矩阵中的任意一个r阶子式不为0,且任意的r+1阶子式为0,则阶数r就叫作该矩阵的秩。

对一个矩阵,存在某个r阶行列式,值不为0,这个r阶行列式就是对一个矩阵你画r条横线,r条竖线,这个横竖线交叉的元素构成了一个新的数表,这个数表的行列式就叫作这个矩阵的r阶子式。

第二个角度,如果我们把矩阵进行初等行变换,将矩阵变换为一个行阶梯形矩阵后,那么行阶梯形矩阵的非0行就是这个矩阵的秩。这是通过运算的角度来给出的矩阵的秩的定义,对矩阵进行初等行变换后得到的行阶梯形矩阵的非0行的个数。

第三个角度,是从线性方程组的角度来给出的,我们可以把秩理解为一种约束,因为方程我们就可以理解为约束,当我们把矩阵看成齐次线性方程组的系数的时候,矩阵的秩就是这个方程组里真正存在的方程的个数。

虽然写出了很多个方程,但有一些是没有用的,可以由其他方程来表示的,这些没用的消去之后剩下的真正的约束的个数就是这个矩阵的秩。

第四个角度,将矩阵看成由一个个向量放在一起拼成的,这个秩就是向量组中独立的向量的个数,其实和上述方程组的角度是差不多的。

扩展资料

定理:矩阵的行秩,列秩,秩都相等。

定理:初等变换不改变矩阵的秩。

定理:如果A可逆,则r(AB)=r(B),r(BA)=r(B)。

定理:矩阵的乘积的秩Rab=min{ Ra,Rb};

引理:设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。

当r(A)=n-2时,最高阶非零子式的阶数=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

当r(A)=n-1时,最高阶非零子式的阶数=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

参考资料来源:百度百科-矩阵的秩

矩阵的秩是怎么定义的,以及为什么要这么定义

矩阵的秩的定义:是其行向量或列向量的极大无关组中包含向量的个数。

能这么定义的根本原因是:矩阵的行秩和列秩相等(证明可利用n+1个n维向量必线性相关)

矩阵的秩的几何意义如下:在n维线性空间V中定义线性变换,可以证明:在一组给定的基下,任一个线性变换都可以与一个n阶矩阵一一对应;而且保持线性;换言之,所有线性变换组成的空间EndF(V)与所有矩阵组成的空间M(n)F是同构的。

扩展资料:

A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。

特别规定零矩阵的秩为零。

显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在rmin(m,n)时,A中所有的r+1阶子式全为零,则A的秩为r。

由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。

由行列式的性质知,矩阵A的转置AT的秩与A的秩是一样的。

奇异值分解非常有用,对于矩阵A(p*q),存在U(p*p),V(q*q),B(p*q)(由对角阵与增广行或列组成),满足A = U*B*V

U和V中分别是A的奇异向量,而B是A的奇异值。AA'的特征向量组成U,特征值组成B'B,A'A的特征向量组成V,特征值(与AA'相同)组成BB'。因此,奇异值分解和特征值问题紧密联系。

如果A是复矩阵,B中的奇异值仍然是实数。

SVD提供了一些关于A的信息,例如非零奇异值的数目(B的阶数)和A的阶数相同,一旦阶数确定,那么U的前k列构成了A的列向量空间的正交基。

参考资料来源:百度百科——矩阵的秩

矩阵的秩的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于矩阵的秩和行列式的值有什么关系、矩阵的秩的信息别忘了在本站进行查找喔。


版权声明:本文为「调和鼎鼐网」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。  
原文链接:http://c2xce8zk.wechaoduo.com/html/809a80898382.html

Tags:

相关文章